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Grand canonical and canonical ensembles become equivalent in the thermodynamic limit, but when the
system size is finite the results obtained in the two ensembles deviate from each other. In many important
cases, the canonical ensemble provides an appropriate physical description but it is often much easier to
perform the calculations in the corresponding grand canonical ensemble. We present a method to compute
averages in the canonical ensemble based on calculations of the expectation values in the grand canonical
ensemble. The number of particles, which is fixed in the canonical ensemble, is not necessarily the same as the
average number of particles in the grand canonical ensemble.
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I. INTRODUCTION

Whenever we need to work with a system of many quan-
tum particles it is much easier to perform the calculation in
the grand canonical ensemble than to do the corresponding
calculations in the canonical ensemble. For example, the cal-
culation of the grand canonical partition function for an ideal
gas of fermions or bosons is trivial, whereas the computation
of the canonical partition function for the same system be-
comes a formidable task even for a small number of par-
ticles. Provided that the system is thermodynamically large,
the canonical and grand canonical descriptions agree with
each other. There are many quantum systems where the ca-
nonical description is more appropriate; these include hot
nuclei �1�, ultrasmall metallic grains �2�, Bose and Fermi
gases in atomic traps �3,4�, and atoms in plasmas �5�. There-
fore, it is important to have a practical theoretical and com-
putational method which enables us to extract canonical av-
erages from corresponding grand canonical calculations.

The problem that we would like to solve in this paper is
the following. Suppose that we can perform calculations �or
measurements� in the grand canonical ensemble which is
characterized by temperature T and chemical potential �. We
would like to compute expectation values of an arbitrary
quantity O in the canonical ensemble with temperature T and
the number of particles n by using only the averages in the
grand canonical ensemble. The number of particles n, which
is fixed in the canonical ensemble, is not necessarily the
same as the average number of particles �N� in the grand
canonical ensemble.

Earlier works on particle number projection in grand ca-
nonical ensembles have been performed to treat hot nuclei
�1,6–8�, and Bose-Einstein condensation �3,4,9� and to for-
mulate a canonical statistical mean field approximation for
mesoscopic systems �10�. Our approach is very different.
First, we do not rely on projection operators but extract in-
formation from the grand canonical averages by inverting the
fluctuation matrix. Second, �N� does not necessarily equal n
although it might.

II. THEORY

A quantum mechanical system has the Hamiltonian H.
The Hamiltonian H commutes with the particle number op-
erator N,

�H,N� = 0. �1�

Therefore the Hamiltonian and the particle number operator
have the same set of eigenvectors:

N�n�� = n�n�� , �2�

H�n�� = En��n�� . �3�

Let O be an arbitrary operator. The average in the grand
canonical ensemble is

�O� =
1

Z
�
n�

e−��En�−�n��n��O�n�� , �4�

with Z being the grand canonical partition function,

Z = �
n�

e−��En�−�n�, �5�

and �=1 /kT. The average in the canonical ensemble is

�O�n =
1

Zn
�
�

e−�En��n��O�n�� , �6�

with Zn being the canonical partition function,

Zn = �
�

e−�En�. �7�

We can consider �O�n as a function of n and expand it as a
power series

�O�n = �
k=0

�

qkn
k. �8�

With this expansion the grand canonical average �4� becomes
�Appendix A�

�O� =	�
k=0

�

qkN
k
 . �9�

Next, we take the canonical expectation value and add or
subtract the grand canonical average,
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�O�n = �
k=0

�

qkn
k + �O� −	�

k=0

�

qkN
k
 . �10�

Then we cancel the k=0 terms in both sums, and the canoni-
cal expectation value becomes

�O�n = �O� − �
k=1

�

qk��Nk� − nk� . �11�

This expression for the canonical average of the operator O
involves only grand canonical expectation values. The coef-
ficients qk are yet to be calculated. To determine them we
introduce the operator

Ō = O − �
k=1

�

qkN
k �12�

and compute the expectation value �Ōf�N��, where f�N� is an
arbitrary function of N. We show in Appendix A that this
expectation value can be split:

�Ōf�N�� = �Ō��f�N�� . �13�

Since f�N� is an arbitrary function of N, Eq. �13� is equiva-
lent to the following system of equations:

�ŌN� = �Ō��N� ,

�ŌN2� = �Ō��N2� ,

]

�ŌNk� = �Ō��Nk� ,

] . �14�

If we use the explicit form for operator Ō �12�, the system of
equations �14� becomes

�
k=1

�

qkAkm = �ONm� − �O��Nm� , �15�

where the matrix Akm is built from the fluctuations

Akm = �Nk+m� − �Nk��Nm� . �16�

The system of linear algebraic equations �15� along with the
expansion represents the main result of the paper. Similar
equations �although for the case �N�=n� were obtained by
the methods of thermofield dynamics in the context of super-
conducting nuclei at finite temperature �11,12�.

It can be readily shown by the direct differentiation of the
partition function �5� that

Akm =
1

Z2�k+m�Z
�k+mZ

��k+m −
�kZ

��k

�mZ

��m� . �17�

Now we prove the convergence of the expansion �11�. It
is possible to demonstrate, based on simple considerations,
that the difference between the canonical and grand canoni-
cal averages is �13�

�O� − �O�n 

1

�N�
. �18�

The calculation in Appendix C shows that for k�1

qk 
 1/�N�k. �19�

Suppose that n= �N�. Then ��Nk�−nk�
�N�k−1 for large �N�.
Therefore, the corrections to the grand canonical average in
Eq. �11� become in this case

�
k=1

�

qk��Nk� − nk� �
1

�N��k=1

�

ck, �20�

where ck are some coefficients. Comparing �18� and �20� we
see that �k=1

� ck is finite. This means that the expansion �11�
converges when �N�=n. We would like to note at this point
that each term in the sum �11� is 
1 / �N�. This means that
the method becomes computationally efficient when it is ap-
plied to large systems, since one needs to include fewer
terms in the expansion to achieve the same accuracy in this
case. Let us consider the corrections to the grand canonical
average in Eq. �11� for the case n= �N�+ j, where j is some
integral number,

�O� − �O�n = �
k=1

�

qk��Nk� − ��N� + j�k� . �21�

We assume that j / �N��1. If we substitute the expression for
�Nk� �C17� into �21� and use the binomial expansion up to
the first order in j / �N� for ��N�+ j�k, we obtain

�O� − �O�n = �
k=1

�

qk�N�k−1ck�k − 1�
2

�1 −
2j

c�k − 1�� . �22�

The series �22� always converges for j=0, as we just dem-
onstrated. To prove the convergence for j�0 we split the
sum �22� into two parts: the first part is for 0�k	K and the
second part is for K�k��, where K is some positive inte-
ger. The first part is always finite and 
1 / �N�. By choosing
K, we can always make �1− 2j

c�k−1� ��1 for k�K. Therefore,

the convergence of the expansion �11� for the �N�=n case
implies convergence for any finite difference ��N�−n� for

which
��N�−n�

�N� �1. We note that these arguments may not work

when the matrix Anm is singular. For example, in the case of
a low-temperature Fermi gas, all matrix elements Anm tend to
zero; therefore the canonical and grand canonical descrip-
tions may deviate from each other in the thermodynamic
limit due to the persistent existence of few-particle fluctua-
tions in the grand canonical ensemble �14�.

III. EXAMPLE CALCULATIONS

As an example we consider the system of noninteracting
quantum particles distributed on nlevels single-particle energy
levels with energies 
l. The logarithm of the grand canonical
partition function is
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ln Z = � �
l=1

nlevels

ln�1 + �e���−
l�� , �23�

where �= +1 is for fermions and �=−1 is for bosons. We set
�=1, 
l= l, and nlevels=5 in all our calculations.

First, we extract averages in the canonical ensemble for
the smaller system from the grand canonical ensemble for
the larger system. We select the chemical potential � in such
a way that the average number of particles �N� in the grand
canonical ensemble is 4. We would like to extract informa-
tion about the canonical ensemble with n=2 particles from
this grand canonical ensemble. We compute the occupation
numbers and then all physical quantities like the total energy
can be calculated with the use of these occupation numbers.
To start our calculations, we set O=nl, where nl is the opera-
tor of the number of particles on level l. Then we solve the
system of linear equations �15� to find the coefficients qk and
use these qk’s to calculate the grand canonical occupation
numbers by Eq. �11�. The matrix elements Anm are computed
by Eq. �17� and with the help of the recurrence relation from
Appendix B. The matrix element in the right-hand side of
Eq. �15� is computed as the following derivative of the grand
canonical partition function �23�:

�nlN
m� = −

1

Z�m+1

�m+1Z

�
l � �m . �24�

The results of these calculations are shown in Table I �fermi-

ons� and Table II �bosons�. The fermionic and bosonic sys-
tems both show convergence to the exact results as we in-
clude more terms in expansion �11�. The convergence for
bosons is slower than that for fermions. This is due to the
fact that the fluctuations of the occupation numbers ��nl

2�
= �nl�−��nl�2 tend to be larger for bosons ��=−1� than for
fermions ��= +1�.

The method also works in the opposite direction; there-
fore we can compute averages in the canonical ensemble for
the larger system using grand canonical averages for the
smaller system. We select the grand canonical ensemble with
�N�=2 and compute the occupation numbers in the canonical
ensemble of n=4 particles. Table III shows the results of
these calculations for noninteracting fermions. The conver-
gence to the exact values is as good as in the previous case,
thereby demonstrating that the method can also be used to
extract the canonical ensemble information for the larger sys-
tem from the grand canonical calculations of the smaller sys-
tem. Very similar results were obtained for bosons and we do
not show them here.

IV. CONCLUSIONS

We formulated a method to compute averages in the ca-
nonical ensemble based on calculations in the grand canoni-
cal ensemble. The number of particles n, which is fixed in
the canonical ensemble, is not necessarily the same as the

TABLE I. Occupation numbers and total energy for fermions. FD refers to the Fermi-Dirac statistics in
the grand canonical ensemble ��N�=4�. The number of particles in the canonical ensemble is 2. kmax is the
number of terms included in expansion �11�.

kmax

l 
l FD 1 2 3 4 6 Exact

1 1.0 0.98 0.92 0.87 0.86 0.87 0.87 0.87

2 2.0 0.95 0.80 0.69 0.67 0.67 0.68 0.68

3 3.0 0.87 0.52 0.34 0.34 0.30 0.30 0.30

4 4.0 0.72 0.07 0.01 0.06 0.11 0.12 0.12

5 5.0 0.48 −0.31 0.10 0.06 0.04 0.04 0.04

Total energy 10.77 2.82 3.77 3.78 3.79 3.79 3.79

TABLE II. Occupation numbers and total energy for bosons. BE refers to the Bose-Einstein statistics in
the grand canonical ensemble ��N�=4�. The number of particles in the canonical ensemble is 2. kmax is the
number of terms included in expansion �11�.

kmax

l 
l BE 1 3 5 7 11 Exact

1 1.0 3.43 1.52 1.52 1.47 1.44 1.42 1.42

2 2.0 0.40 0.33 0.33 0.37 0.39 0.39 0.39

3 3.0 0.12 0.10 0.10 0.11 0.12 0.13 0.13

4 4.0 0.04 0.04 0.04 0.04 0.04 0.05 0.05

5 5.0 0.01 0.01 0.01 0.01 0.02 0.02 0.02

Total energy 4.81 2.68 2.69 2.77 2.82 2.84 2.85

CALCULATIONS OF CANONICAL AVERAGES FROM THE… PHYSICAL REVIEW E 77, 021120 �2008�

021120-3



average number of particles �N� in the grand canonical en-
semble. Expansion �11� and the system of linear algebraic
equations �15� for the coefficients of expansion are the main
result of the paper. We performed test calculations for ideal
Fermi and Bose gases, compared our calculations with the
exact results, and demonstrated the convergence properties
of the expansion �11�.
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APPENDIX A: USEFUL IDENTITIES

Proof that if �O�n=�k=0
� qkn

k then �O�= ��k=0
� qkN

k�:

�O� =
1

Z
�
n�

e−��En�−�n��n��O�n��

=
1

Z
�

n

e��n�
�

e−�En��n��O�n�� =
1

Z
�

n

e��nZn�O�n

=
1

Z
�

n

e��nZn�
k=0

�

qkn
k =

1

Z
�
n�

e−��En�−�n��
k=0

�

qkn
k

=
1

Z
�
n�

e−��En�−�n��n���
k=0

�

qkN
k�n�� =	�

k=0

�

qkN
k
 .

Proof that �Ōf�N��= �Ō��f�N��:

�Ōf�N�� =
1

Z
�
n�

e−��En�−�n��n��Ōf�N��n��

=
1

Z
�
n�

e−��En�−�n��n��Ō�n��f�n�

=
1

Z
�

n

e��nf�n��
�

e−�En��n��Ō�n��

=
1

Z
�

n

e��nf�n��
�

e−�En��n��O − �
k=1

�

qkN
k�n��

=
1

Z
�

n

e��nf�n�Zn��O�n − �
k=1

�

qkn
k�

=
1

Z
�

n

e��nf�n�Znq0 = �f�N��q0 = �f�N���Ō� .

APPENDIX B: RECURRENCE RELATION FOR THE
CALCULATIONS OF THE DERIVATIVES

We define �m=�m / ����m. Let


 = ln Z,Zm = �mZ . �B1�

Then

Zm = �m�e
� . �B2�

Therefore

Zm+1 = �m � �e
� = �m�
�e
� = �
k=0

m
m!

k ! �m − k�!
Zk


�m−k+1�,

�B3�

where


�k� = �k
 . �B4�

Explicitly,


�0� = 
 = � �
l=1

nlevels

ln Bl, Bl = 1 + � exp���� − 
l�� .

�B5�

�=1 for fermions and =−1 for bosons.
Assume that


�k� = �
l=1

nlevels

�
�=0

k

a�
k �Bl�−�. �B6�

Since

TABLE III. Occupation numbers and total energy for fermions. FD refers to the Fermi-Dirac statistics in
grand canonical ensemble ��N�=2�. The number of particles in the canonical ensemble is 4. kmax is the
number of terms included in expansion �11�.

kmax

l 
l FD 1 2 3 4 5 Exact

1 1.0 0.80 1.18 0.92 0.98 0.99 0.99 0.99

2 2.0 0.60 1.18 1.01 0.97 0.93 0.97 0.97

3 3.0 0.36 0.91 1.02 0.96 0.97 0.91 0.91

4 4.0 0.17 0.51 0.70 0.72 0.73 0.77 0.77

5 5.0 0.07 0.23 0.35 0.38 0.37 0.36 0.36

Total energy 4.10 9.42 10.53 10.54 10.55 10.55 10.55

KOSOV, GELIN, AND VDOVIN PHYSICAL REVIEW E 77, 021120 �2008�

021120-4



��Bl�−� = − ����Bl�−� − �Bl�−�−1� , �B7�

we get then


�k+1� = �
�k� = �
l=1

nlevels

�
�=0

k

− ��a�
k ��Bl�−� − �Bl�−�−1� .

�B8�

Since, according to �B6�,


�k+1� = �
l=1

nlevels

�
�=0

k+1

a�
k+1�Bl�−�, �B9�

we find that

a�
k+1 = − ���a�

k − �� − 1�a�−1
k � . �B10�

Evidently,

a0
1 = �, a1

1 = − � . �B11�

APPENDIX C: SCALING WITH THE NUMBER OF
PARTICLES

We use notations �B1�–�B5� from Appendix B. In these
notations,

�Nm� �
Zm

Z�m . �C1�

Plugging this into Eq. �B3� we get

�Nm+1� = �
k=0

m
m!

k ! �m − k�!
�Nk�


�m−k+1�

�m−k+1 . �C2�

In the thermodynamic limit, the sum over l in �B5� can be
replaced by an integral. Since the corresponding density of
states is proportional to the system volume V, e.g., in three-
dimensional space it becomes �� is the mass of the particle�

��
� =
V

�2�2
���

�
�3

�
 , �C3�

we see that 
�m�
V. Since �Nm� must be proportional to Vm,
the term with k=m in Eq. �C2� gives the leading contribu-
tion. Retaining in �C2� the two leading terms, we get

�Nm+1� � �Nm��N� + m

�2�

�2 �Nm−1� �C4�

with


�2�

�2 � �N2� − �N�2 � �
l

��nl� − ��nl�2� . �C5�

Here �nl� are the Bose-Einstein or Fermi-Dirac occupation
numbers. Since �N��1, we assume in Eq. �C4� that

�Nm� = �N�m +

�2�

�2 �m�N�m−2 + O��N�m−4� . �C6�

Inserting �C6� into �C4� and retaining the leading terms, we
get

�m+1 = �m + m, �m = m�m − 1�/2. �C7�

Thus

�Nm� � �N�m +

�2�

�2

m�m − 1�
2

�N�m−2. �C8�

Now, we consider the terms �nlN
m�. Following Eq. �24� we

differentiate Eq. �B3� over 
l, and, retaining only the leading
terms in V, we get

�nlN
m+1� = �nlN

m��N� + �Nm���nl� − ��nl�2� . �C9�

We shall look for the solution in the form

�nlN
m+1� = �nl��N�m+1 + �m+1�N�m + O��N�m−1� .

�C10�

Inserting this equation into �C9�, we obtain �m+1=�m+ �nl�
−��nl�2 and

�nlN
m+1� � �nl��N�m+1 + �m + 1���nl� − ��nl�2��N�m.

�C11�

Next, we consider the system of linear equations �15�. In
the thermodynamic limit, we retain only the first terms in
Eqs. �C11� and �C8�. If we apply a “weak” thermodynamic
limit and retain the next-order terms in Eqs. �C11� and �C8�,
then

Akm � km

�2�

�2 �N�k+m−2, �C12�

�nlN�m − �nl��N�m � m��nl� − ��nl�2��N�m−1. �C13�

Therefore, assuming that 
�m�
V
�N�, we get

qkAkm 
 �N�m−1, �C14�

qk�N�k+m−1 
 �N�m−1, �C15�

and therefore

qk 
 1/�N�k. �C16�

The same �N� dependence can also be obtained if we express
the particle number operator N in terms of creation and an-
nihilation operators and apply Wick’s theorem �15� to the
matrix elements �Nm� and �nlN

m�.
Using the fact that 
�2�
�N�, we transform Eq. �C8� to

the form

�Nm� � �N�m + c
m�m − 1�

2
�N�m−1. �C17�

Here c is some constant that does not depend on m and �N�.
It has not escaped our notice that Eqs. �C4� and �C9�

break down for bosons at critical and lower temperatures,
since, due to the Bose condensation, 
�m� becomes propor-
tional to Vm.
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